## A Proof That All Natural Numbers Are Interesting

This is a proof that all natural numbers are interesting.

Suppose, for the sake of contradiction, that not all whole numbers are interesting. Using the well-ordering property of the whole numbers, among the non-interesting numbers there is a smallest non-interesting number N. But that would make N interesting, after all, a contradiction.

Therefore all numbers are interesting.

Thanks to Gerald for this submission!

** Note: Some posts on Math-Fail are user-submitted and NOT verified by the admin of the site before publication. If you find this post to be distasteful, non-math related, ?or something worse?, then definitely leave a comment letting me know. Thanks very much! Mike **

1. I’m a fan of good jokes and all, but that’s the oldest one in the book.

“224 (number), the smallest natural number which does not have its own Wikipedia article.”

0  0

2. Doesn’t that just prove that there exisits natural numbers that are interesting, not that all natural numbers are intersting?

0  0

3. Interesting joke…

0  0

4. After all, we can have “the smallest natural number, which wouldn’t be interesting otherwise”.

0  0

5. Math joke from the book “Almanac of mathematical curiosities” by Ian Stewart. The book is fantastic.

0  0

6. The problem is that once you declare that a given number is the smallest non-interesting number (which makes it interesting), it no longer is the smallest non-interesting number, which makes it no longer interesting, which makes it interesting, which makes it no longer interesting, which makes it….

0  0

7. Uuck Fou aou yll

0  0

8. 0  0